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I. INTRODUCTION ,,

Recent trends in projectile design have led to shapes with
greater length and more slender ogives. Unexpected flight stability
problems have been encountered due to decreased aerodynamic stability
of these new shapes. Clearly, conventional aerodynamic predictive
capabilities were not adequate. In an effort to avoid these problems
in the future, the Ballistic Research Laboratory has been developing
advanced numerical computational techniques for computing projectile
aerodynamic characteristics to improve shell design technology. -

Substantial progress has been made in the past 10 years in
the development of aerodynamic computational techniques and in the
availability of high speed digital computers. This progress has made
it possible to begin to use advanced finite-difference computational
techniques to perform parametric aerodynamic studies for evaluation of
proposed design concepts.

The use of advanced numerical computational techniques for a
parametric study is difficult to justify to compute only static
aerodynamic parameters since cheaper, less complex techniques such as

C> Ref. (1), (2) and (3) are available. However, if dynamic derivatives
such as Magnus and pitch damping are considered important and if viscous
drag is of interest, then the advanced computation techniques are
justified and, in fact, must be used. This paper reports the initial
results of an ongoing research effort at BRL to form an advanced
aerodynamic computation capability that will provide the shell designer

Zwith a complete package of static and dynamic aerodynamic coefficients
for use in design studies.
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II. COMPUTATIONAL TECHNIQUES

Scope of Effort

Three dimensional finite-difference flow field computational
techniques for inviscid and turbulent viscous flow have been applied to
generate a comprehensive set of aerodynamic coefficients for
cone-cylinder (CC), tangent-ogive-cylinder (TOC), and secant-ogive-
cylinder (SOC) body configurations. The model geometries considered in
this study are shown in Figure 1. Body lengths up to seven calibers

L .00 -1 soc CowiuGRATiON and ogive lengths of two, three,
L2L .2.3.,.5.6,7 and four calibers have been

-T L LI 2. It, - 11-OW.00 .,8.so considered. The aerodynamic
L I ts .32.5o coefficients computed are

1.00 !.06 pitching moment, normal force,
O, 0MN4O AS center of pressure, Magnus moment,

NOS LoEGTHS Magnus force, Magnus center of
4- pressure, form and viscous drag,

SOE coNouAnoN roll damping and pitch damping.

0-140.02, R,- 4.25 The sign convention for the
-- .. .. . pitch plane and Magnus forces is
L ,, ,16,.25 shown in Figure 2. All

t ,.23 aerodynamic coefficients are
A 2  computed in a conceptually exact

SHOWN: .L/O TANGENT-OGIVE CYLINDE manner. The only empirical input
is that required for the modeling

' L .L8,3,.,.6.7 of turbulent eddy viscosity.

L2 - The computations have
2 3--------been carried out for a Mach number

SHOWN:5L/O 10DGREE CONE CYLINDE range of 1.75 < M < 5. These
AL. DIMENSIONS IN CALImRS computations were all performed
AngiAftcfm OwTyLocAnmsOAA BEN1=P for an angle of attack of 1, a

Figure 1. Model Geometries nondimensional spin rate (PD/V)
of 0.19, and for sea level

CN atmospheric free-stream conditions.
Specific comparisons to wind
tunnel data were made for the
tunnel operating conditions.

-CYr
, U S ( 1 3M F O M 4 - -

Figure 2. Magnus and Normal Forces on Spinning -

Projectile
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Coupled Inviscid-Viscous Computations

The sequence of computations which are run in order to compute
the static aerodynamic parameters, including turbulent viscous effects,
is shown in Figure 3. Each block represents a separate computer code.
These codes have been combined using the overlay technique on the BRL
Cyber computer. The two main codes are those which compute three
dimensional turbulent boundary layer development and three dimensional
inviscid flow.

S"at m The computation of the

ADUX. PWILES effects of viscosity is of crucial
30 ZEVISCI ----- importance when such parameters as

STAW s P. FM roll damping, Magnus, and drag are
ONm of interest. The technique

30 WmSCIU . o. .I * employed here is a fully implicit,
*30AK.IILTO P 0 rn finite difference Vuperical scheme

• * " . v..v.A developed by Dwyer.4 . This
technique takes into consideration

0the changes in direction of the

cross-flow velocity that occur on
the side of the shell where the

PM1 inviscid cross-flow opposes the
me pigginmerIM surface spin.

Com a z The equations solved are

WISCZ0 ---- the basic equations defining the
MR ICAL TIP-s * °" C ° " *three-dimensional compressible,

* !UVSCto FOR IU
O OE 013KAWW I turbulent boundary-layer flow overS * a body of revolution described by

* the relation r = r(x). The
coordinate system is shown in
Figure 4.

Figure 3. Sequence of Computations

Figure 4. Coordinate System
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Continuity

- (riu) + -2- (r-v) + (NC) =0 (1)

x momentum

+-a5+ ; qa 2  . - e a a (2)
PLU 1-Y + -r - r xj ax ay ay PUV

momentum

-F- A ~ai ia;; jiirape i -vx + - - r - + - -- pv'w (3)

Energy

+ + -- 3=U e ti~IP x-v y raJ ax r+ r - + LPy/ +\;/J

- a + a B aw a_ (4)
-u'v"a-pvW a- y 5 y

where v = v + p v/p and the bar indicates a time-averaged quantity.

In order to obtain closure of this system of equations, the
following models of the turbulence terms have been introduced:

Turbulent shear stress

- ~~D 2-= +-- ~ FaA (3i2!2= FtaiA2 +/aD;2l-2Lk y/ \W/ e L\W, +\WJJ

where e is introduced as the turbulent viscosity and the mixing length,
Z = 0.09 6tanh[(0.4/0.09)(y/6)]. Van Driest damping is used to account
for the effect of the laminar sublayer.

Turbulent heat transfer

kt a
Pc ay

p

The turbulent Prandtl number is introduced as

Prt = C/k t = 0.90
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The three-dimensional displacement surface is not merely the
vector sum of the longitudinal and circumferential components of the
boundary-layer displacement thickness. Instead, the differential
equation derived by Moore 5):

_- [PeUer( 6*D )] + PA- eWe(8 D-%)] = 0 (5)

must be solved for 6-*D the three-dimensional boundary-layer displace-

ment thickness where

6. = fu)dy 6* J 1 w )dy
x 0 Oe e 0 Pe e

With a body fixed coordinate system, the gas dynamic
equations for inviscid flow can be written as

E +F G + H =0 (6)
z r

where the flux vectors E, F, G, and H are

[Pu 1u~v w 1uFv 1
E U -u+ P1 F = G- jpuw j H =jPuv
Puv Pv2+p r [pvw P(v2_w2 )
puw J Lvw w2+p. L2p vw

These equations are solved using MacCormack's(6) two-step,

predictor-corrector finite difference scheme. The unt~qe feature of
the program used here, which was developed by Sanders for the Magnus
problem, is that the flow field is computed about an axisymmetric model
plus displacement surface. Due to the distortion of the viscous layer
caused by interaction of the surface spin, the effective aerodynamic
shape has no plane of symmetry.

The flow field variables resulting from these computation
steps have been developed to yield the following aerodynamic
coefficients--pitching moment, normal force, center of pressure, Magnus
force, Magnus moment, Magnus center of pressure, form drag, viscous
drag, and roll damping. The computational time for a single body
configuration and flow field condition is approximately ten minutes on
a CDC 7600 computer.
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Coning Motion Computations

In order ;o) compute the effective pitch damping, the technique
developed by Schiff 8  is used. This computational technique relates
the side force on a body undergoing a coning motion about the CG
location to the pitch damping (CM + CM.), see Figure 5.

q ax

The n,,m ,rical technique
* is MacCormack's' predictor-

corrector, explicit marching scheme.
This computation involves the
solution of the Euler equations
including terms for Coriolis

a(2pxsxv) and centrifugal [px(ixr)I
forces in a body fixed coordinate
system. For this case, the H vector
in equation 6 becomes

V

Figure S. Coning Motion About Center of f(ravity

FPv
1 puv+pr[2(w 2w-w3v)+WIW 2r-x(w +w )]

H=i ~ 2-w2)+pr[2(w 3u-Wlw)+Wlw2x-r(w?.wi)]

L2pvw+pr[2 (WV-w 2u)+w3 (w2r+w s) I

where wl, W2, and W3 are the components of the angular velocity vector
resolved in the z, r, and * directions, respectively.

For the case of a steady coning motion, the flow field is
time-invariant in the body-fixed coordinate system. The effective
pitch damping (CM + CM.) is determined using the relation

q a
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CY" sino(CM  + CM) (7)
q a

where Cy = side force at coning rate 6 and effective angle of attack

a, which is valid for small values of a and 6. Thus a dynamic
aerodynamic parameter is determined using a steady flow field
computation. This is a potentially very useful tool for the exterior
ballistician. The computation time is approximately 90 seconds on a
CDC 7600 computer for the body configurations in this study.

Ill. RESULTS

Comparisons to Experiment

Detailed comparisons of the computations to experimental data
for turbulent boundary layer profile characteristics, wall pressure
measurements and Magnus force are reported in Ref. (9). Comparisons
shown here will be limited to the aerodynamic coefficients of interest.

Examples of comparisons of the computed results to experimental
data are presented in Figures 6 through 10. The comparisons for pitch
plane static parameters shown in Figures 6, 7 and 8 indicate excellent
agreement. The limited comparison for Magnus in Figure 9 indicates
acceptable agreement if allowance is made for the small magnitude of

the Magnus effect and the variance between the wind tunnel and range
experimental measurements. A comparison between computation and
experiment for pitch damping is shown in Figure 10. The experimental
point, which is for an L/D of 5.12 and cone angle of 9.520, shows
excellent agreement with the trend of the computed results. In general,
it is felt that the numerical computations do provide an accuracy for
the aerodynamic coefficients that is within the uncertainty of our
ability to determine these coefficients experimentally. However, it is
felt that a broader scope of comparison for the aerodynamic coefficients
between experiment and computation is of interest and increased effort
to accomplish this is underway.
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Figure 10. Pitch Damping, Comparison with
Experiment
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Parametric Comparisons

Examples illustrating the parametric results are shown in
Figures 11 through 26. The series of comparisons shown in Figures 11
through 20 illustrates an example for each aerodynamic coefficient
computed in this study. The case chosen is the SOC model for a total
length-of six calibers and for ogive lengths of two, three, and four
calibers. The aerodynamic coefficients are plotted versus Mach number
for atmospheric free stream launch conditions assuming an adiabatic
wall temperature boundary condition. These comparisons show, for a
fixed body length, that configurations with long slender ogives have
reduced pitch damping, less drag, and a reduced Magnus moment compared
to bodies with shorter ogive lengths.

SOC. L/0-6
12 C.OGAt 0.6. iSHINO NOI 3 SOC. L/D•6 

V- + t 3

+ 2

2- LNLNN

4 - 2 3 0

2
+w~t RN 3) 4 + W.T. (LN-3), I I I I, . 5 I I I I I

o0C#0 2 3 1 1
MACH 2MACH

Figure 11. Pitching Moment, Parametric Figure 12. Center of Pressure, Parametric
Comparison, SOC, L/D = 6 Comparison, SOC, L/D = 6

SOC. L/0,6SOC. L/06 .8 C.G.MAT6iL SHIND NOSE

2

.0 -3.6 -LN.01 2

z £

.04 3

4
+W.T. (LN,32

0 1 2 MACH / , 5 MACH 3 ,
Figure 13. Normal Force, Parametric Figure 14. Magnus Moment, Parametric

Comparison, SOC, L/D 6 Comparison, SOC, L/D 6
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S SOC. L.I06 6 SOC, W/0,6

LN
LN 3

A 42

3

________ _ '.3
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0 I 2 M A 5 0 2 3 4 5MlACH MAtCH

Figure IS. Magnus Force, Parametric Figure 16. Magnus Center of Pressure,

Comparison, SOC, L/D = 6 Parametric Comparison, SOC, L/D * 6

.06 SOC, L/D.6 .3 SOC, L/ .6

.04 .2
a. LN
I0 "- 2

LN

33

+ W.t (IN -31
I IIII i I , i

MAC i MACH

Figure 17. Viscous Drag, Parametric Figure 18. Form Drag Plus Viscous Drag

Comparison, SOC, L/D 6 Parametric Comparison, SOC, L/D =

SOC, L/D - 6

SOC, LiD 6 , C.rAt 0.61 SIINO NOSE

IN
A LN

3 A

-.0 ,. - 3

2

0 W-20

4-1 I I
-. 0 2 3 4 2 3 AMAC" MACH

Figure 19. Roll Damping, Parametric Figure 20. Pitch Damping, Parametric
Comparison, SOC, L/D = 6 Comparison, SOC, L/D = 6
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Examples are shown in Figures 21 through 23 illustrating the effects of
variations in ogive shape for fixed forebody and total projectile
lengths. These comparisons show that pitching moment, Magnus moment,
and pitch damping are increased as ogive bluntness is increased.

2/0 6. LN*3 1.2 L/D ,6. LN - 3
C.~ 0.61. INHNO NOR C OAL 0.W.EINO NSE

4 ' J

A SOC
TOC 

O
I0.C .2

I 2 MACH 3 4 MACH

Figure 21. Pitching koment, Parametric Figure 22. MagnuF Moment, Parametric
Comparison, L/O = , L = 3 Comparison, L/D = 6, LN  3

LID, 6, LN-3
0 C.0, At 0.6L SEINNO NOSE

.4-1CC

3 SOC
Uroc

U-20

-30' , , , I .

MACH3

Figure 23. Pitch Damping, Parametric
Comparison. L/D = 6, LN  3
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The final sequence of parametric comparisons is shown in Figures 24
through 26 where the effect of varying the body length is shown for a
fixed ogive shape. These figures show that pitching moment, Magnus
moment, and pitch damping are all increased as the body length is
increased.

12-SOC.N312C.G.Ar 0.61. ieHI(ND NOS9 2 SOC ,LN -3

l. C..AT 0.6k. BEIND NOSE

7

L /D4 -76
.A

6
2 -5 .2 --- - - - - 5

4

MAC 2 3 2 M ACH 3 £1 53

Figure 24. Pitching Moment, Parametric Figure 23. Magnus MIoment, Parametric
Comparison, SOC, L N 3 Comparison, SOC, K' 3

SOC, LN -3
0o C.Q At 0.6k. BEHIND 14OM LID

3

w*2 - 7

MAC14 1

Figure 2o,. Pit~h Damping, Parametric
Comparison, SOC. =N 3
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The comparisons shown represent a small fraction of the
potential comparisons possible from the total data base generated. The
intent here has been to illustrate the capability of the computation
techniques rather than develop any conclusion as to the relative
superiority of any particular configuration. This study is part of a
continuing effort that is being expanded to include boattail
configurations and a wider Mach number range--transonic velocities are
of particular interest.

IV. SUMMARY

A computational aerodynamics parametric study has been
described in which advanced numerical techniques for computing three-
dimensional inviscid and turbulent viscous supersonic flow fields have
been used. A comprehensive data base has been generated for cone-
cylinder, tangent-ogive-cylinder, and secant-ogive-cylinder
configurations. Comparisons between the computed results and experiment
have provided verification of the computational techniques. Comparisons
of the computed results for differing body configurations have

.0 established the ability of the computation techniques to distinquish
the effects of body configuration on the aerodynamic coefficients.

The comparisons for this study represent the first
comprehensive use of advanced flow field computation techniques to
develop a parametric aerodynamic analysis which includes turbulent
viscous effects. Of particular interest are the computations of Magnus
effects, which are accomplished in a conceptually exact manner, and the
computations of pitch damping. Although the technique of computing
pitch damping from a steady coning motion has been available for several
years, this study is the first known comprehensive application of this
technique to ogive-cylinder bodies.
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NOMENCLATURE

A = reference area = ffD2 /4

CDBL = viscous drag = (ffT xcoseBdS)/qA

CDF = total drag = (ffpwsineBdS)/qA + CDBL

CLP = roll damping = (ffrT dS)/(qAD PD/V)

CM = pitching moment = (ffzpw cospcosOBdS)/qAD

CMA = pitching moment coefficient = CM/a

CMPA = Magnus moment coefficient = CMY/(PD/V/a)

CMY = Magnus moment = [ff(zp wsinpcose B + z-rcoscos B + zApsincos0 B

+ ZTxSin~sin0B)dS]/(qAD)

CN, CN  = normal force = (ffp wcoscosBdS)/qA

0

CMQ + CMA= pitch damping = C n/sina

CNY,C = Magnus force = [ff(pwsinocosEB + T cosocoseB + Apsincos0B +

x sin~sinOB)dS]/qA
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= side force in coning motion = (ffpwsin~cosOBdS)/(qA6)

CPN = center of pressure = CM/CN

CPY = Magnus center of pressure = CMY/CNY

D = diameter of model

P = spin rate, rad/s

q = free stream dynamic pressure (pcV2)/2

r = local radius of model

Re = Reynolds number based on model length

S = surface area

u, v, w = velocities in boundary-layer coordinates

V = velocity along model trajectory

x = surface coordinate in longitudinal direction

y, Y = coordinate perpendicular to local surface

z = cylindrical coordinate along model axis

Ap = centrifugal pressure gradient contribution to side force

a = effective angle of attack for coning motion

T x = longitudinal velocity wall shear

T = circumferential velocity wall shear

0 = local slope of body surface

6 = coning rate
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